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Working memory is aided by long-term memory

* A hallmark of our visual working memory system is its sharp capacity limit
* But this capacity limit can be overcome with familiarity:
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* Meaningfulness // real-world objects:
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* Repetition learning // associative learning:
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How is working memory performance improved?

» Working memory load may be expanded for familiar // meaningful //
learned stimuli

« Additional resources are recruited allowing a greater number of items to be held
within working memory

» Working memory load is reduced via chunking
* Load is reduced by requiring fewer “chunks” to be held in working memory
* Recall is improved by relying on recruitment of long-term memory



Pointers in working memory

* Pylyshyn (2009) proposed the visual system has an indexing mechanism
that keeps track of an individual object through its changes

 This index is abstracted from the contents of the object ®

* We propose that items in working memory are assigned to a content-
independent pointer
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Multivariate neural signature of WM pointers

Experiment 1: Color

Experiment 2: Orientation
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Multivariate neural signature of WM pointers

Experiment 1: Color

Single-Feature to Conjunction Load Classification
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Multivariate neural signature of WM pointers
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Different working memory loads on the hyperplane
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Test: Set size 1 and 4
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Multivariate neural signature of WM pointers

* The multivariate load signal for pointers is dissociated from
spatial attention Jones et al. (accepted), Psychological Science

* The load signal generalizes from color to motion coherence
of random dot kinematograms Henry’s V/SS talk this year

Henry Jones

* The multivariate load signal is shared for audio and visual
stimuli in prep

Darius Suplica

How do working memory pointers

change with associative learning?



Experiment 1: Training
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Experiment 1: Pre-training and post-training



Experiment 1: Pre-training and post-training



Experiment 1: Pre-training and post-training




: training session — aggregate performance
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E1: training session — average performance
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Experiment 1: EEG session

Perceptually
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Train 2 random versus 4 random
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Train 2 random versus 4 random, where is 4 paired?
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Train 2 random versus 4 random, where is 4 paired?
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Train 2 random versus 4 random, test 4 paired
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Train 4 random versus 4 paired, test 2 random

Perceptually
equivalent
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Train 2 random versus 4 paired, test 4 random
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Multidimensional scaling
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Multidimensional scaling
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Multidimensional scaling
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“Weak chunking”

"Strong chunking”
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“Weak chunking”

"Strong chunking”
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Individual differences
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Individual differences
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Individual differences
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Experiment 2 - Training



Experiment 2 - Training
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Experiment 2: EEG session

Perceptually
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Train 6 random versus 2 random, test 6 chunked
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Train 6 random versus 6 chunked, test 2 random
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Train 2 random versus 6 chunked, test 6 random
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Train 6 random versus 2 random, test 6 chunked

Multidimensional scaling
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Distance from hyperplane (a.u.)
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Multidimensional scaling on each subject
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Multidimensional scaling on each subject
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Conclusions

* We asked whether associative learning:
* Increases the number of representations in working memory (memory compression)
 Or reduces the number of items stored in working memory (chunking)

« A multivariate neural signal for items in working memory shows associative
learning reduces the number of items stored in working memory

 Furthermore, neural signatures of associative learning showed the
reduction only in those that successfully learnt the associations

* This is consistent with a chunking account — associative learning may not
allow one to circumvent item limits
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Why does the learned condition not cross the hyperplane?
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What are working memory pointers?

A ‘theory map’ of visual working memory (Ngiam, 2023)
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